
 

 

CS103A Handout 06S 

Winter 2020  

Solutions for Week Six 
 

Getting Started: Induction and Fibonacci Numbers 

The Fibonacci numbers are a series of numbers defined by a recurrence relation. The first two Fibonacci num-

bers are 0 and 1, and each number after that is defined as the sum of the two previous numbers. Formally speak-

ing, we define the Fibonacci numbers as follows: 

F₀ = 0                F₁ = 1                Fn+2 = Fn + Fn+1 

i. Using this definition, determine the values of F₂, F₃, F₄, F₅, F₆, and F₇. 

We know that F₂ = F₀ + F₁, so F₂ = 0 + 1 = 1. 

We know that F₃ = F₂ + F₁, so F₃ = 1 + 1 = 2. 

We know that F₄ = F₃ + F₂, so F₄ = 2 + 1 = 3. 

We know that F₅ = F₄ + F₃, so F₅ = 3 + 2 = 5. 

We know that F₆ = F₅ + F₄, so F₆ = 5 + 3 = 8.                   

We know that F₇ = F₆ + F₅, so F₇ = 8 + 5 = 13.                   

Let P(n) be the statement “F₀ + F₁ + F₂ + F₃ + … + Fn = Fn+2 – 1.” 

ii. If you want to prove this property by induction, you will need to prove a base case. Write out what you 

need to prove in order to prove P(0), then go prove it. 

Proof: We need to prove P(0), that F0 = F0+2 – 1. To see this, note that F₀ = 0 by definition, and F₂ = 1 as shown 

above. Therefore, F₀ = 0 and F₂ – 1 = 1 – 1 = 0, so F₀ = F₂ – 1, as required. ■ 

iii. In a proof by induction, you will assume that P(k) is true for some k ∈ ℕ, then prove that P(k+1) is true. 

Write out what it is that you'd be assuming if you assumed P(k) is true, then write out what you need to prove in 

order to prove P(k+1). 

We will assume for some arbitrary k ∈ ℕ that F₀ + F₁ + F₂ + F₃ + … + Fk = Fk+2 – 1. We will need to prove that 

F₀ + F₁ + F₂ + F₃ + … + Fk + Fk+1 = Fk+3 – 1. 

 



2 / 11 

iv. Prove that if P(k) is true, then P(k+1) is true. 

Proof: Assume that, for some arbitrary k ∈ ℕ, we have F₀ + F₁ + F₂ + F₃ + … + Fk = Fk+2 – 1. We will need to 

prove that F₀ + F₁ + F₂ + F₃ + … + Fk + Fk+1 = Fk+3 – 1. To do so, notice that 

             F₀ + F₁ + F₂ + F₃ + … + Fk + Fk+1  =  (F₀ + F₁ + F₂ + F₃ + … + Fk) + Fk+1. (1) 

Our inductive hypothesis tells us that the parenthesized quantity in the right-hand side of equation (1) is equal to 

Fk+2 – 1. Substituting this in, we see that 

             F₀ + F₁ + F₂ + F₃ + … + Fk + Fk+1  =  Fk+2 – 1 + Fk+1.    (2) 

Since Fk+1 + Fk+2 = Fk+3, we can clean up the right-hand side of equation (2) to see that 

      F₀ + F₁ + F₂ + F₃ + … + Fk + Fk+1  =  Fk+3 – 1,    

 (3) 

which is what we needed to show. ■ 

Why we asked this question: As you could probably tell, this question was designed as a warm-up problem for 

mathematical induction. We chose this particular problem because it involves a recurrence relation (which you'll 

use on the current problem set) and because the inductive step requires using the inductive definition of the Fib-

onacci numbers. We broke the problem down the way we did to walk you through the structure of an induction 

proof one step at a time, at each point asking you what you needed to assume and what you needed to prove so 

that you would have a better sense for how everything fits together. 
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More Fun with Fibonacci Numbers 

i. Prove by induction that F0
2
 + F1

2
 + F2

2
 + … + Fn

2
 = Fn Fn+1 for all natural numbers n. 

Proof: Let P(n) be the statement “F0
2
 + F1

2
 + F2

2
 + … + Fn

2
 = Fn Fn+1.” We will prove by induction on n that 

P(n) holds for all n ∈ ℕ, from which the theorem follows. 

As our base case, we will prove P(0), that F0
2
 = F0 F1. To see this, note that F0 = 0, so F0

2
 = 0 and F0F1 = 0. 

Therefore, we see F0
2
 = F0 F1, as required. 

For our inductive step, assume for some arbitrary k ∈ ℕ that P(k) is true, meaning that 

          F0
2
 + F1

2
 + F2

2
 + … + Fk

2
 = Fk Fk+1.   (1) 

We need to prove that P(k+1) is true, meaning that we need to show 

           F0
2
 + F1

2
 + F2

2
 + … + Fk

2
 + Fk+1

2
 = Fk+1 Fk+2. 

To see this, notice that 

  F0
2
 + F1

2
 + F2

2
 + … + Fk

2
 + Fk+1

2
  =  (F0

2
 + F1

2
 + F2

2
 + … + Fk

2
) + Fk+1

2
. (2) 

Equation (1), our inductive hypothesis, tell us that the parenthesized summation on the right-hand side of equa-

tion (2) is equal to Fk Fk+1, so we can substitute this in to yield 

  F0
2
 + F1

2
 + F2

2
 + … + Fk

2
 + Fk+1

2
  =  Fk Fk+1 + Fk+1

2
.    (3) 

Starting with equation (3) and performing some algebra yields the following: 

        F0
2
 + F1

2
 + F2

2
 + … + Fk

2
 + Fk+1

2
 =  Fk Fk+1 + Fk+1

2
 

            =  Fk+1(Fk  + Fk+1) 

      =  Fk+1 Fk+2     (4) 

Thus F0
2
 + F1

2
 + F2

2
 + … + Fk

2
 + Fk+1

2  
=  Fk+1 Fk+2, as required. ■ 

Consider the recurrence relation 

R₀ = 1            Rn+1 = 1 + 
1
/Rₙ. 

ii. Give exact values for R₀, R₁, R₂, R₃, R₄, and R₅. 

By definition, R₀ = 1. 

This means that R₁ = 1 + 
1
/R₀ = 1 + 

1
/1 = 2. 

This means that R₂ = 1 + 
1
/R₁ = 1 + 

1
/2 = 

3
/2. 

This means that R₃ = 1 + 
1
/R₂ = 1 + 

1
/(3 / 2) = 1 + 

2
/3 = 

5
/3.        

This means that R₄ = 1 + 
1
/R₃ = 1 + 

1
/(5 / 3) = 1 + 

3
/5 = 

8
/5. 

This means that R₅ = 1 + 
1
/R₄ = 1 + 

1
/(8 / 5) = 1 + 

5
/8 = 

13
/8. 
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iii. You should see some sort of pattern emerge relating the numbers Rn from the series above to the Fibo-

nacci numbers. Fill in the blank below to indicate what that pattern is. 

The pattern seems to be Rn = Fn+2 / Fn+1. 

iv. Using induction, prove that the pattern you came up with in part (iii) is correct. 

Proof: Let P(n) be the statement “Rn = Fn+2 / Fn+1.” We will prove by induction that P(n) holds for all n ∈ ℕ, 

from which the theorem follows. 

As our base case, we prove P(0), that R0 = F2 / F1. To see this, note that by definition R₀ = 1 and that both F₂ and 

F₁ are equal to 1. Since 1 = 1 / 1, we see that P(0) holds, as required. 

For our inductive step, assume for some arbitrary k ∈ ℕ that P(k) is true, meaning Rk = Fk+2 / Fk+1. We will 

prove P(k+1), that Rk+1 = Fk+3 / Fk+2. To see this, notice that, by definition, we have 

      Rk+1  =  1 + 1 / Rk.    (1) 

By our inductive hypothesis, we know that Rk = Fk+2 / Fk+1. Substituting this into equation (1) yields 

       Rk+1  =  1 + 1 / (Fk+2 / Fk+1).   (2) 

From here, we can use some algebra to conclude the following: 

         Rk+1  =  1 + 1 / (Fk+2 / Fk+1) 

      =  1 + Fk+1 / Fk+2 

      =  Fk+2 / Fk+2 + Fk+1 / Fk+2 

      =  (Fk+2 + Fk+1) / Fk+2 

      = Fk+3 / Fk+2. 

Thus  Rk+1 = Fk+3 / Fk+2, as required. ■ 

Why we asked this question: These problems were designed to give you more practice with induction while 

building on the theme from the previous problem. We included part (i), an old problem set question, so that you 

could get some experience writing an inductive proof without any scaffolding, hopefully using your proof from 

the first question as a guide. Part (ii) of this problem was designed to get you to engage with a different recur-

rence relation. We asked parts (iii) and (iv) of this problem to give you a feel for what induction looks like in 

practice. Rarely are you given a statement in isolation and told to prove that it has some property. Instead, you 

often discover some sort of interesting pattern, then need to write a proof explaining why that particular pattern 

is not actually a coincidence. Our hope was that you were able to use everything you've seen about Fibonacci 

numbers so far to make the key insight in part (iii), leaving part (iv) as mostly an exercise in algebraic manipu-

lations. 
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Medicine Half-Lives 

i. Write a recurrence relation for cₙ. 

One possible recurrence relation is 

      c₀ = 1 mg 

      cn+1 = cn / 2 + 1 mg 

This works because at time 0, the patient has 1mg of the medicine in her bloodstream, and each hour after the 

first, half the previous amount of medicine is cleared and 1mg new medicine is added. 

ii. Using your recurrence relation from part (i), prove, by induction, that cₙ = (2 – 1/2
n
)mg for all n ∈ ℕ. 

This proves that the patient will never have more than 2mg of medicine in her bloodstream, even if she contin-

ues to take 1mg doses every hour. 

Theorem: For every n ∈ ℕ, we have cn = (2 – 1/2
n
)mg. 

Proof: Let P(n) be the statement “cn = (2 – 1/2
n
)mg.” We will prove by induction that P(n) holds for all n ∈ ℕ, 

from which the theorem follows. 

As a base case, we prove P(0), that c0 = (2 – 1/2
0
)mg. By definition, c0 = 1mg. Simplifying the right-hand side 

of the equality, we see that (2 – 1/2
0
)mg = (2 – 1)mg = 1mg. Therefore, these quantities are equal to one another, 

so P(0) holds. 

For the inductive step, assume that P(k) for some arbitrary k ∈ ℕ, meaning that ck = (2 – 1/2
k
)mg. We will prove 

that P(k+1) is also true, meaning that ck+1 = (2 – 1/2
k+1

)mg. By using our inductive hypothesis and the definition 

of ck+1, we see that 

         ck+1 = ck / 2 + 1 mg 

     = ((2 – 1/2
k
) / 2)mg + 1mg 

     = (1 – 1/2
k+1

)mg + 1mg 

     = (2 – 1/2
k+1

)mg 

Therefore, ck+1 = (2 – 1/2
k+1

)mg, as required. Thus P(k+1) is true, completing the induction. ■ 

Why we asked this question: Up to this point, we have not required you to write out your own recurrence rela-

tions. Here, we asked you to do that, then to write a proof about the structure of that recurrence relation. 
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Picking Coins 

Consider the following game for two players. Begin with a pile of n coins for some n ≥ 0. The first player then 

takes between one and ten coins out of the pile, then the second player takes between one and ten coins out of 

the pile. This process repeats until some player has no coins to take; at this point, that player loses the game. 

Prove that if the pile begins with a multiple of eleven coins in it, the second player can always win if she plays 

correctly. 

 

There are many ways we can prove this. This first proof works by using induction on steps of size eleven: 

Theorem: If this game is played with the pile containing 11n coins for some natural number n, the second play-

er can always win the game. 

Proof 1: Let P(n) be the statement “if the game is played with the pile containing n coins, the second player can 

always win if she plays correctly.” We will prove by induction that P(n) holds for all natural numbers n that are 

multiples of 11, from which the theorem follows. 

As a base case, we need to prove P(0), that if the game is played with a pile containing 0 coins, the second play-

er always can win. This is true because there are no coins in the pile when the game starts, and so no matter 

what the second player does, she'll win because the first player loses. 

For the inductive step, assume for some arbitrary k ∈ ℕ that P(k) is true and if the game is played with k coins, 

the second player can always win if she plays correctly. We will prove that P(k + 11) holds: the second player 

can always win in a game with k + 11 coins if she plays correctly 

Suppose the game starts with k + 11 coins. Consider the first player's move, which must remove some number c 

coins from the pile, where 1 ≤ c ≤ 10. This leaves k+11–c coins remaining. Now, suppose the second player then 

removes move 11–c coins from the pile. This leaves a total of k+11–c–(11–c) = k coins remaining in the pile, 

and it's now the first player's turn again. By the inductive hypothesis, this means that the second player can 

force a win in this situation, so the second player will eventually win the game. Consequently, starting with 

k+11 coins, the second player can win, so P(k+11) holds, completing the induction. ■ 
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Here’s another way to prove this that works by having P(n) explicitly talk about multiples of eleven, then using 

regular induction with steps of size one: 

Theorem: If this game is played with the pile containing 11n coins for some natural number n, the second play-

er can always win the game. 

Proof: Let P(n) be the statement “if the game is played with the pile containing 11n coins, the second player can 

always win if she plays correctly.” We will prove by induction that P(n) holds for all natural numbers n ∈ ℕ, 

from which the theorem follows. 

As a base case, we need to prove P(0), that if the game is played with a pile containing 11·0 = 0 coins, the sec-

ond player always can win. This is true because there are no coins in the pile when the game starts, and so no 

matter what the second player does, she'll win because the first player loses. 

For the inductive step, assume for some arbitrary k ∈ ℕ that P(k) is true and if the game is played with 11k 

coins, the second player can always win if she plays correctly. We will prove P(k+1) holds: the second player 

can always win in a game with 11(k+1) = 11k + 11 coins if she plays correctly 

Suppose the game starts with 11k + 11 coins. Consider the first player's move, which must remove some number 

c coins from the pile, where 1 ≤ c ≤ 10. This leaves 11k+11–c coins remaining. Now, suppose the second player 

then removes move 11–c coins from the pile. This leaves a total of 11k+11–c–(11–c) = 11k coins remaining in 

the pile, and it's now the first player's turn again. By the inductive hypothesis, this means that the second player 

can force a win in this situation, so the second player will eventually win the game. Consequently, starting with 

11k+11 coins, the second player can win, so P(k+1) holds, completing the induction. ■ 

Why we asked this question: Notice how this proof works by explicitly stating the second player's strategy, 

which is to make the total number of coins removed by her move and the first player's move come out to 11. 

This enables the inductive hypothesis to guarantee that the strategy can then force a win from the previous mul-

tiple of eleven. When proving that a certain player can win a game given some setup, a common technique is to 

see if that player can react to the first player's turn in a way that reduces the game to a case that is already 

known to be solved. 

The technique employed here, in which we use inductive reasoning to prove that a player has a certain strategy, 

can be generalized to a technique called backwards induction, which reasons about a situation by considering 

the very last action and then working backwards to see how each player would try to make that action work in 

their favor. 
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Factorials! Multiplied together! 

If n is a natural number, then n factorial, denoted n!, intuitively represents the product 1 × 2 × … × n. Formally, 

we define n! using a recurrence relation: 

0! = 1                        (n+1)! = (n + 1) · n! 

i. What are 0!, 1!, 2!, 3!, 4!, and 5!? 

0!, by definition, is equal to 1. 

We therefore have that 1! = 1 · 0! = 1 · 1 = 1. 

We therefore have that 2! = 2 · 1! = 2 · 1 = 2. 

We therefore have that 3! = 3 · 2! = 3 · 2 = 6. 

We therefore have that 4! = 4 · 3! = 4 · 6 = 24. 

We therefore have that 5! = 5 · 4! = 5 · 24 = 120. 

    For any m, n ∈ ℕ, we have m!n! ≤ (m + n)!.   (★) 

Let P(n) be the statement “for any m ∈ ℕ, we have m!n! ≤ (m+n)!.” 

ii. Explain why if we prove P(n) is true for all n ∈ ℕ, we will prove that statement (★) is true. 

If P(n) is true for all natural numbers n, then it means that for any choice of n and for any choice of m, we have 

m!n! ≤ (m+n)!. This is precisely what's articulated by statement (★). 
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iii. Prove, by induction, that P(n) is true for all n ∈ ℕ. Go slowly through this proof – there are a lot of 

quantifiers here, so take the time to write out what you're assuming for P(k) and what you need to prove in order 

to show that P(k+1) is true. 

Theorem: For any m, n ∈ ℕ, the inequality m!n! ≤ (m + n)! is true. 

Proof: Let P(n) be the statement “for any m ∈ ℕ, the inequality m!n! ≤ (m+n)! is true.” We will prove, by induc-

tion, that P(n) is true for all n ∈ ℕ, from which the theorem follows. 

For our base case, we prove P(0), that for any m ∈ ℕ, we have m!0! ≤ (m + 0)!. Notice that 

m!0! = m! · 1 = m! = (m + 0)! 

Therefore, m!0! ≤ (m + 0)!. 

For our inductive step, assume for some arbitrary k ∈ ℕ that P(k) holds, so for any m ∈ ℕ, we know that m!k! ≤ 

(m+k)!. We will prove P(k+1): for any m ∈ ℕ, we have m!(k+1)! ≤ (m+k+1)! To do this, begin with any m ∈ ℕ. 

Expanding out the definition of factorial and using our inductive hypothesis shows the following: 

           m!(k+1)! = m!k!(k+1)  (by definition of (k+1)!) 

     ≤ (m+k)!(k+1)  (by the inductive hypothesis) 

     < (m+k)!(m+k+1) (since k+1 < m+k+1) 

     = (m+k+1)!  (by definition of (m+k+1)!) 

This tells us that m!(k+1)! ≤ (m+k+1)!. Therefore, P(k+1) holds, completing the induction. ■ 

iv. Give an intuitive explanation for why statement (★) is true without appealing to induction. 

Intuitively, you can see why this result would be true by expanding out the quantity m!n! and the quantity 

(m+n)! and putting them side-by-side. Notice that m!n! = 1 · 2 · … · m · 1 · 2 · … · n. This should be no greater 

than the quantity 1 · 2 · … · m · (m+1) · (m+2) · … · (m+n) = (m+n)!. The induction formalizes this reasoning. 

Why we asked this question: Notice how our property P(n) internally ranges over all possible choices of m. It is 

often possible to do induction on claims involving multiple variables by doing normal induction on just one 

variable and proving the claim is true for the remaining variables as normal. This style of induction (where we 

do induction on one variable and use a proof of the form “pick an arbitrary...” on another) is quite common 

when working with multiple variables. We hoped this example gives some guidance on how to structure those 

sorts of proofs! 
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Elimination Tournaments 

i. Prove, by induction, that in an elimination tournament of 2
n
 players, exactly 2

n
 – 1 total games are 

played. Then, give an intuitive justification for this result that doesn't use induction. 

Proof: Let P(n) be the statement “in an elimination tournament of 2
n
 players, exactly 2

n
 – 1 total games are 

played.” We will prove, by induction, that P(n) holds for all n ∈ ℕ, from which the theorem follows. 

As a base case, we will prove P(0), that in an elimination tournament of 2
0 

= 1 player, exactly 2
0
 – 1 = 0 

total games are played. Since there is only a single player, that player wins immediately without any games 

being played. 

For the inductive step, assume for some arbitrary k ∈ ℕ that P(k) is true, meaning that in an elimination 

tournament of 2
k
 players, exactly 2

k
 – 1 games are played. We will prove P(k+1), that in an elimination 

tournament of 2
k+1

 players, exactly 2
k+1

 – 1 games are played. 

Consider an elimination tournament with 2
k+1

 players in it. In the first round, each of the 2
k+1

 players is 

paired off with another player, so 2
k
 games are played. Half of them lose their games and are eliminated, 

and the remaining 2
k
 players will then play in the remaining tournament. That remaining tournament is an 

elimination tournament with 2
k
 players, so 2

k
 – 1 games will then be played. The total number of games 

played is then 2
k
 + 2

k
 – 1 = 2(2

k
) – 1 = 2

k+1
 – 1, as required. ■ 

Intuitively, each game eliminates one player and a total of 2
n
 – 1 players need to be eliminated. 

ii. Let p be a player in an elimination tournament of 2
n
 total players (where n ≥ 1). Prove, by induc-

tion, that if p would win against fewer than n players in a head-to-head matchup, then p cannot possibly 

win the elimination tournament. 

Proof: Let P(n) be the statement “if a player in a 2
n
-player elimination tournament would win against few-

er than n of the other players in a matchup, that player cannot possibly win the tournament.” We will prove 

by induction that P(n) holds for all n ≥ 1, from which the theorem follows. 

As a base case, we prove P(1), that if a player in a 2-player elimination tournament would win against 

fewer than 1 other player, that player cannot possibly win the elimination tournament. In this setup, the 

player is guaranteed to lose their only game because they would win against at most 0 other players, so 

they will be eliminated in their first match, ensuring that they cannot win the tournament. 

For the inductive step, assume for some arbitrary k ∈ ℕ, k ≥ 1, that P(k) is true and no player in any 2
k
-

player elimination tournament who would win fewer than k games can win the tournament. We'll prove 

P(k+1), that no player in any 2
k+1

-player tournament who would win fewer than k+1 games can win the 

tournament. 

Consider any player in a 2
k+1

-player tournament who can win against fewer than k+1 players. Look at their 

first round. If they're paired against someone they can't beat, then they lose the tournament. Otherwise, 

they're paired against someone they can beat. This means that after the round, they've eliminated one of the 

players they can beat, so there are fewer than k players remaining that they can beat. There are also 2
k
 

players left. Therefore, by the inductive hypothesis, the player has no way of winning at this point. In all 

cases, the player will lose the tournament, as required. ■ 

Why we asked this question: We chose these problems to show that induction can be applied to all sorts of 

discrete structures, not just the vanilla natural numbers. Plus, this particular problem is something that I 

worked on as part of my Ph.D. research! 



11 / 11 

Prime Numbers 

Using a proof by complete induction, prove that every natural number n ≥ 1 can be written as a product of zero 

or more prime numbers. 

Theorem: Every natural number greater than one can be written as the product of prime numbers. 

Proof: Let P(n) be the statement “n can be written as the product of zero or more prime numbers.” We will 

prove by complete induction that P(n) holds for all n ≥ 1. 

As a base case, we need to show P(1), that 1 can be written as the product of primes. We can express 1 as the 

product of zero prime numbers, which is by definition equal to 1. 

For the inductive step, assume for some arbitrary k ≥ 1 that P(1), P(2), …, P(k) hold. This means that any natu-

ral number between 1 and k, inclusive, can be written as the product of prime numbers. We will to prove 

P(k+1), that k+1 can be written as the product of primes. 

Consider the number k+1. If k+1 is prime, then it is the product of just itself and we're done. Otherwise, k+1 is 

composite, so it can be written as pq for some natural numbers p and q where neither p nor q is one and neither 

p nor q is equal to k+1. This means that p and q must be between 2 and k, inclusive, so we can express p and q 

as products of primes. We can then express k+1 as a product of primes by multiplying together all the prime 

numbers in the expressions of p and q as prime numbers. Therefore, P(k+1) is true, completing the induction. ■ 

Why we asked this question: Notice how complete induction is employed to its fullest here. A normal induction 

couldn't correctly conclude that p and q are the products of primes, since they could be much smaller than k. 

However, since we're using complete induction, any natural number between 1 and k inclusive is assumed to be 

the product of primes, so the proof works out correctly. 

Going forward, this proof is one of the two parts of the fundamental theorem of arithmetic (FTA), which says 

that any natural number greater than one can be written uniquely as the product of primes. It is a cornerstone of 

number theory and is often used as a first example when discussing complete induction. In order to show that 

the representation is unique, you need another lemma called Euclid's lemma, which says that if a prime number 

divides some product mn, then either that prime divides m or it divides n. 


